Método de avaliação aplicado à configuração dinâmica dos setores de controle do espaço aéreo

Autores

  • Fabio Nascimento Instituto Tecnológico de Aeronáutica (ITA)
  • Paulo Costa George Mason University
  • Denise Ferrari Instituto Tecnológico de Aeronáutica (ITA)
  • Alexandre Barreto Instituto de Controle do Espaço Aéreo (ICEA)

Palavras-chave:

Simulação, Gerenciamento do espaço aéreo, Configuração dinâmica do espaço aéreo, Markov-switching vector autoregression

Resumo

Dentre as iniciativas de modernização do controle do espaço aéreo, a configuração dinâmica do espaço aéreo (Dynamic Airspace Configuration – DAC) constitui um novo paradigma para a aviação, em que a geometria dos setores de controle busca adaptar-se às constantes alterações na demanda. Este estudo apresenta o método AirCEM (Airspace Configuration Evaluation Method), o qual propõe uma métrica de avaliação, baseada em um modelo markoviano de estados, o qual proporciona a visualização dinâmica dos efeitos da nova configuração nos períodos críticos de carga de trabalho, dentro de um horizonte de tempo definido. Dado o seu caráter analítico, a metodologia apresenta uma métrica a qual auxilia na decisão de separar/combinar os setores de controle, em função dos fatores de complexidade e carga de trabalho do controlador.

Referências

BRASIL, “Anuário do Transporte Aéreo - Dados Estatísticos e Econômicos de 2012,” Agência Nacional de Aviação Civil, Brasília, DF, 2013.

P. Kopardekar, K. Bilimoria, and B. Sridhar, “Initial Concepts for Dynamic Airspace Configuration,” in 7th AIAA ATIO Conf, 2nd CEIAT Int’l Conf on Innov & Integr in Aero Sciences,17th LTA Systems Tech Conf; followed by 2nd TEOS Forum, 0 vols., American Institute of Aeronautics and Astronautics, 2007.

A. Yousefi, R. Hoffman, M. Lowther, B. Khorrami, and H. Hackney, “Trigger Metrics for Dynamic Airspace Configuration,” in 9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO), 0 vols., American Institute of Aeronautics and Astronautics, 2009.

D. Gianazza and K. Guittet, “Selection and Evaluation of Air Traffic Complexity Metrics,” presented at the 25th Digital Avionics Systems Conference, 2006 IEEE/AIAA, 2006, pp. 1–12.

P. Kopardekar, A. Schwartz, S. Magyarits, and J. Rhodes, “Airspace Complexity Measurement: An Air Traffic Control Simulation Analysis,” Int. J. Ind. Eng. Theory Appl. Pract., Jun. 2009.

S. Zhuoxi, C. Yangzhou, L. Zhenlong, Z. Defu, and B. Hong, “A review for workload measurement of air traffic controller based on air traffic complexity,” presented at the Control and Decision Conference (CCDC), 2013 25th Chinese, 2013, pp. 2107–2112.

J. D. Hamilton, “A new approach to the economic analysis of nonstationary time series and the business cycle,” Econometrica, no. 57, p. 27, 1989.

R. L. S. Bueno, Econometria de séries temporais, 2a ed. Cengage Learning, 2012.

H.-M. Krolzig, Markov-Switching Vector Autoregressions. Modelling, Statistical Inference, and Application to Business Cycle Analysis. Berlin: SPRINGER-VERLAG, 1997.

A. Yousefi and G. Donohue, “Temporal and Spatial Distribution of Airspace Complexity for Air Traffic Controller Workload-Based Sectorization,” in AIAA 4th Aviation Technology, Integration and Operations (ATIO) Forum, 0 vols., American Institute of Aeronautics and Astronautics, 2004.

M. Farsad and S. M.-B. Malaek, “Part IV: Clustering and Optimization: Application of Dependency Structure Matrix to Airspace Sectorization and Improving the Distribution of the Workload Among Controllers,” in Risk and Change Management in Complex Systems, F. Marle, M. Jankovic, M. Maurer, D. M. Schmidt, and U. Lindemann, Eds. Oxford: Hanser, 2014, pp. 147–156.

R. H. Mogford, J. A. Guttman, S. L. Morrow, and P. Kopardekar, “The Complexity Construct in Air Traffic Control: A Review and Synthesis of the Literature.,” Jul. 1995.

A. Majumdar, W. Ochieng, J. Bentham, and M. Richards, “En-route sector capacity estimation methodologies: An international survey,” J. Air Transp. Manag., vol. 11, no. 6, pp. 375–387, 2005.

A. Majumdar, W. Y. Ochieng, G. McAuley, J. M. Lenzi, and C. Lepadatu, “The Factors Affecting Airspace Capacity in Europe: A Cross-Sectional Time-Series Analysis Using Simulated Controller Workload Data,” J. Navig., 2004.

M. Bloem and P. Kopardekar, “Combining Airspace Sectors for the Efficient Use of Air Traffic Control Resources,” in AIAA Guidance, Navigation and Control Conference and Exhibit, 0 vols., American Institute of Aeronautics and Astronautics, 2008.

R. Kicinger and A. Yousefi, “Heuristic Method for 3D Airspace Partitioning: Genetic Algorithm and Agent-Based Approach,” in 9th AIAA Aviation Technology, Integration, and Operations Conference (ATIO), 0 vols., American Institute of Aeronautics and Astronautics, 2009.

J. Mitchell, G. Sabhnani, R. Hoffman, J. Krozel, and A. Yousefi, “Dynamic Airspace Configuration Management Based on Computational Geometry Techniques,” in AIAA Guidance, Navigation and Control Conference and Exhibit, 0 vols., American Institute of Aeronautics and Astronautics, 2008.

BRASIL, “PCA 351-3 Plano de Implementação ATM nacional,” Departamento de Controle do Espaço Aéreo, Brasília, 2012.

ISASoftware, Reorganized ATC Mathematical Simulator - RAMS Plus. 2013.

BRASIL, “DEPARTAMENTO DE CONTROLE DO ESPAÇO AÉREO,” Serviço de Informações Aeronáuticas - AIS Brasil, 2015. [Online]. Available: http://www.aisweb.aer.mil.br/?i=cartas.

RCORETEAM, R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing, 2012.

CANADÁ, “Global Air Traffic Management Operational Concept,” Montreal, 2005.

A. Majumdar, “A framework for modelling the capacity of Europe’s airspace using a model of air traffic controller workload,” University of London, London, UK, 2003.

Downloads

Publicado

2021-09-30

Como Citar

[1]
F. Nascimento, P. Costa, D. Ferrari, e A. Barreto, “Método de avaliação aplicado à configuração dinâmica dos setores de controle do espaço aéreo”, Spectrum, vol. 22, nº 1, p. 12–18, set. 2021.

Edição

Seção

Análise Operacional e Engenharia Logística

Categorias